Structure of the phenylalanyl-tRNA synthetase genes from Thermus thermophilus HB8 and their expression in Escherichia coli.

نویسندگان

  • R Kreutzer
  • V Kruft
  • E V Bobkova
  • O I Lavrik
  • M Sprinzl
چکیده

A 4459 bp long BamHI restriction fragment containing the two genes for the Thermus thermophilus HB8 phenylalanyl-tRNA synthetase was cloned in Escherichia coli and its nucleotide sequence was determined. The genes pheS and pheT encode the alpha- and beta-subunits with a molecular weight of 39 and 87 kD, respectively. Three conserved sequence motifs typical for class II tRNA synthetases occur in the alpha-subunit. Secondary structure predictions indicate that an arm composed of two anti-parallel alpha-helices similar to that reported for the E.coli seryl-tRNA synthetase may be present in its N-terminal portion. In the beta-subunit clusters of hydrophilic amino acids and a leucine zipper motif were identified, and several pronounced alpha-helical regions were predicted. The particular arginine and lysine residues in the N-terminal portion of the beta-subunit, which were found to participate in tRNA binding in the yeast and E.coli PheRSs, have their counterparts in the T.thermophilus protein. The 5'-portion of an open reading frame downstream of pheT was found and codes for a yet unidentified, extremely hydrophobic peptide. The pheST genes are presumably cotranscribed and translationally coupled. A novel type of a putative transcriptional terminator in Thermus species was identified immediately downstream of pheT and other Thermus genes. The genes pheS and pheST were expressed in E.coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biologically active 53 kDa fragment of overproduced alanyl-tRNA synthetase from Thermus thermophilus HB8 specifically interacts with tRNA Ala acceptor helix.

The alaS gene encoding the alanyl-tRNA synthetase (AlaRS) from Thermus thermophilus HB8 was cloned and sequenced. The gene comprises 2646 bp, corresponding to 882 amino acids, 45% of which are identical to the enzyme from Escherichia coli . The T. thermophilus AlaRS was overproduced in E.coli , purified and characterized. It has high thermal stability up to approximately 65 degrees C, with a te...

متن کامل

Virtual screening for binding of phenylalanine analogues to phenylalanyl-tRNA synthetase.

Although incorporation of nonnatural amino acids provides a powerful means of controlling protein structure and function, experimental investigations of amino acid analogues for utilization by the protein biosynthetic machinery can be costly and time-consuming. In this paper, we describe a computational protocol (HierDock) for predicting the relative energies of binding of phenylalanine analogu...

متن کامل

Functions of isolated domains of methionyl-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8.

Methionyl-tRNA synthetase (MetRS, 2 X 75 kDa) was purified to homogeneity from an extreme thermophile, Thermus thermophilus HB8. The polypeptide chain of MetRS was cleaved by limited digestion with trypsin into four domains: T1 (29 kDa), T2 (23 kDa), T3 (14.5 kDa), and T4 (7.5 kDa), which were aligned in that order. MetRS was also cleaved into similar fragments with a variety of other proteases...

متن کامل

Thermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli.

Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications as H(2)O(2)-detoxifying systems. We cloned the genes encoding Mn-dependent catalases from Thermus thermophilus HB27 and HB8 and a less thermostable mutant carrying two amino acid replacements (M129V and E293G). When the wild-type and mutant genes were overexpressed in Escherichia coli, unmodified or six-H...

متن کامل

Crystal Structure at 2.6Å Resolution of Phenylalanyl-tRNA Synthetase Complexed with Phenylalanyl-Adenylate in the Presence of Manganese Ions

Introduction: Aminoacyl-tRNA synthetases (aaRSs) is a family of enzymes, that covalently attach amino acids to a cognate tRNAs through a two-step aminoacylation reaction. At the first step, amino acid is activated by the attack of ATP molecule, giving rise to an intermediate molecule, aminoacyl-adenylate. Based on their structural and functional features, aaRSs are divided into two classes. Phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 16  شماره 

صفحات  -

تاریخ انتشار 1992