Structure of the phenylalanyl-tRNA synthetase genes from Thermus thermophilus HB8 and their expression in Escherichia coli.
نویسندگان
چکیده
A 4459 bp long BamHI restriction fragment containing the two genes for the Thermus thermophilus HB8 phenylalanyl-tRNA synthetase was cloned in Escherichia coli and its nucleotide sequence was determined. The genes pheS and pheT encode the alpha- and beta-subunits with a molecular weight of 39 and 87 kD, respectively. Three conserved sequence motifs typical for class II tRNA synthetases occur in the alpha-subunit. Secondary structure predictions indicate that an arm composed of two anti-parallel alpha-helices similar to that reported for the E.coli seryl-tRNA synthetase may be present in its N-terminal portion. In the beta-subunit clusters of hydrophilic amino acids and a leucine zipper motif were identified, and several pronounced alpha-helical regions were predicted. The particular arginine and lysine residues in the N-terminal portion of the beta-subunit, which were found to participate in tRNA binding in the yeast and E.coli PheRSs, have their counterparts in the T.thermophilus protein. The 5'-portion of an open reading frame downstream of pheT was found and codes for a yet unidentified, extremely hydrophobic peptide. The pheST genes are presumably cotranscribed and translationally coupled. A novel type of a putative transcriptional terminator in Thermus species was identified immediately downstream of pheT and other Thermus genes. The genes pheS and pheST were expressed in E.coli.
منابع مشابه
A biologically active 53 kDa fragment of overproduced alanyl-tRNA synthetase from Thermus thermophilus HB8 specifically interacts with tRNA Ala acceptor helix.
The alaS gene encoding the alanyl-tRNA synthetase (AlaRS) from Thermus thermophilus HB8 was cloned and sequenced. The gene comprises 2646 bp, corresponding to 882 amino acids, 45% of which are identical to the enzyme from Escherichia coli . The T. thermophilus AlaRS was overproduced in E.coli , purified and characterized. It has high thermal stability up to approximately 65 degrees C, with a te...
متن کاملVirtual screening for binding of phenylalanine analogues to phenylalanyl-tRNA synthetase.
Although incorporation of nonnatural amino acids provides a powerful means of controlling protein structure and function, experimental investigations of amino acid analogues for utilization by the protein biosynthetic machinery can be costly and time-consuming. In this paper, we describe a computational protocol (HierDock) for predicting the relative energies of binding of phenylalanine analogu...
متن کاملFunctions of isolated domains of methionyl-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8.
Methionyl-tRNA synthetase (MetRS, 2 X 75 kDa) was purified to homogeneity from an extreme thermophile, Thermus thermophilus HB8. The polypeptide chain of MetRS was cleaved by limited digestion with trypsin into four domains: T1 (29 kDa), T2 (23 kDa), T3 (14.5 kDa), and T4 (7.5 kDa), which were aligned in that order. MetRS was also cleaved into similar fragments with a variety of other proteases...
متن کاملThermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli.
Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications as H(2)O(2)-detoxifying systems. We cloned the genes encoding Mn-dependent catalases from Thermus thermophilus HB27 and HB8 and a less thermostable mutant carrying two amino acid replacements (M129V and E293G). When the wild-type and mutant genes were overexpressed in Escherichia coli, unmodified or six-H...
متن کاملCrystal Structure at 2.6Å Resolution of Phenylalanyl-tRNA Synthetase Complexed with Phenylalanyl-Adenylate in the Presence of Manganese Ions
Introduction: Aminoacyl-tRNA synthetases (aaRSs) is a family of enzymes, that covalently attach amino acids to a cognate tRNAs through a two-step aminoacylation reaction. At the first step, amino acid is activated by the attack of ATP molecule, giving rise to an intermediate molecule, aminoacyl-adenylate. Based on their structural and functional features, aaRSs are divided into two classes. Phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 20 16 شماره
صفحات -
تاریخ انتشار 1992